E-scooter Injury and Policy

Jonathan Rupp, Ph.D.1 and Bob Dallas, J.D.2

1EMORY DEPARTMENT OF EMERGENCY MEDICINE
2ROBERT FRANKLIN DALLAS, LLC

FEBRUARY 21, 2020
INJURY PREVENTION RESEARCH CENTER AT EMORY (IPRCE)
BROWN BAG LECTURE SERIES
About Injury

10 Leading Causes of Death by Age Group, United States - 2017

<table>
<thead>
<tr>
<th>Rank</th>
<th>1-4</th>
<th>5-9</th>
<th>10-14</th>
<th>15-24</th>
<th>25-34</th>
<th>35-44</th>
<th>45-54</th>
<th>55-64</th>
<th>65+</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Congenital Anomalies</td>
<td>4,560</td>
<td>Unintentional Injury</td>
<td>1,267</td>
<td>Unintentional Injury</td>
<td>718</td>
<td>Unintentional Injury</td>
<td>800</td>
<td>Unintentional Injury</td>
<td>13,441</td>
</tr>
<tr>
<td>2</td>
<td>Short Gestation</td>
<td>3,749</td>
<td>Congenital Anomalies</td>
<td>424</td>
<td>Malignant Neoplasms</td>
<td>418</td>
<td>Suicide</td>
<td>547</td>
<td>Suicide</td>
<td>929</td>
</tr>
<tr>
<td>3</td>
<td>Maternal Pregnancy Comp.</td>
<td>1,422</td>
<td>Malignant Neoplasms</td>
<td>325</td>
<td>Congenital Anomalies</td>
<td>268</td>
<td>Malignant Neoplasms</td>
<td>437</td>
<td>Homicide</td>
<td>1,095</td>
</tr>
<tr>
<td>4</td>
<td>SIDS</td>
<td>1,963</td>
<td>Homicide</td>
<td>203</td>
<td>Homicide</td>
<td>154</td>
<td>Congenital Anomalies</td>
<td>191</td>
<td>Malignant Neoplasms</td>
<td>1,374</td>
</tr>
<tr>
<td>5</td>
<td>Unintentional Injury</td>
<td>1,317</td>
<td>Heart Disease</td>
<td>127</td>
<td>Heart Disease</td>
<td>75</td>
<td>Homicide</td>
<td>178</td>
<td>Heart Disease</td>
<td>913</td>
</tr>
<tr>
<td>6</td>
<td>Sudden Infant Death Syndrome</td>
<td>813</td>
<td>Influenza & Pneumonia</td>
<td>104</td>
<td>Influenza & Pneumonia</td>
<td>62</td>
<td>Heart Disease</td>
<td>104</td>
<td>Congenital Anomalies</td>
<td>355</td>
</tr>
<tr>
<td>7</td>
<td>Bacterial Sepsis</td>
<td>592</td>
<td>Sepsis</td>
<td>60</td>
<td>Chronic Low Respiratory Disease</td>
<td>59</td>
<td>Chronic Low Respiratory Disease</td>
<td>75</td>
<td>Diabetes Mellitus</td>
<td>248</td>
</tr>
<tr>
<td>8</td>
<td>Septicemia</td>
<td>419</td>
<td>Septicemia</td>
<td>19</td>
<td>Cerebrovascular Disease</td>
<td>56</td>
<td>Cerebrovascular Disease</td>
<td>190</td>
<td>Cerebrovascular Disease</td>
<td>1,811</td>
</tr>
<tr>
<td>9</td>
<td>Septicemia</td>
<td>411</td>
<td>Septicemia</td>
<td>33</td>
<td>Septicemia</td>
<td>51</td>
<td>Chronic Low Respiratory Disease</td>
<td>158</td>
<td>HIV</td>
<td>513</td>
</tr>
<tr>
<td>10</td>
<td>Neonatal Hemorrhage</td>
<td>379</td>
<td>Perinatal Period</td>
<td>42</td>
<td>Benign Neoplasms</td>
<td>31</td>
<td>Benign Neoplasms</td>
<td>31</td>
<td>Benign Neoplasms</td>
<td>31</td>
</tr>
</tbody>
</table>

Data Source: National Vital Statistics System, National Center for Health Statistics. CDC.

Produced by: National Center for Injury Prevention and Control, CDC using WISQARS®.®

revention Research at Emory
Injury Deaths by Intent, 2018

Unintentional: 69.5%
Suicide: 20.1%
Homicide: 7.8%
Undetermined: 2.3%
Mechanisms of Injury Death

- Firearms: 24.3%
- Motor Vehicle, Traffic: 21.4%
- Drug Poisoning: 20.3%
- Fall: 10.8%
- Suffocation: 8.4%
- Unspecified: 3.8%
- Drowning: 2%
- Fire: 1.8%
- Other: 4%
- Non Drug Poisoning: 1.6%
- Cutting/Pierce: 1.1%
About IPRCE

- Transportation Injury
- Opioid Overdose
- Violence
- TBI
- Falls

IPRCE
Injuries Associated with Shared Electric Dockless Micromobility Devices

Jonathan D. Rupp, Daniel T. Wu, Olivia Zoph, Bjorn Anderson, Lauren A. Hudak

FEBRUARY 21, 2020

IPRCE BROWN BAG LECTURE
What are dockless electric micro-mobility devices?
US e-Scooter and e-Bike Deployments, 2.14.20

~352 deployments from 20 companies (14 e-scooter, 4 e-bike, 2 both)

Banned in 31 cities

Source: smartcitiesdive.com
GA e-Scooter and e-Bike Deployments, 2.14.20

Metro ATL: Bird, Jump, Spin, Wheelz, Gotcha*

Banned in Alpharetta, Athens, Columbus, Lilburn, Marietta, Smyna, Tucker, Woodstock

Source: smartcitiesdive.com
Atlanta Timeline

- **Bird**: 5/18
- **Jump, Lyft, Bolt**: 12/18
- **Nine Providers**: 11,650 Permits
- **1/19 City of ATL Regs**
- **8/19 ATL Night-time ban**
- **Lime, Bolt, Lyft, Gotcha exit market**: 11/19-12/19
E-scooter Injury—Data Sources

- NEISS Analyses through 2017 (Bressler et al. 2019, Aizpuru et al. 2019)

- Hospital records
 - ED data: Trivedi et al. 2019 (UCLA hospitals, Sept 2017-Aug 2018, 249 patients, data from EMR); Badeau et al. 2019 (U. Utah, June-Nov 2018, 50 pts)
 - Trauma registry analyses (Kobayashi et al. 2019)

- In-Depth Studies of Deployments
 - CDC/City of Austin DPH (Sept-Nov 2018, 190 patients, data from EMR+follow up survey)
 - PBOT 2018 (pilot deployment, July-Nov 2018)
E-scooter injury—What do we know?

- Injured riders are more likely to be male (50%-60% depending on the study)
- Helmet Use (<10% from field observations, <5% from hospital data)
- Alcohol Impairment (ED: 5%-16% EtOH>0.08g/dL, much higher in trauma data)
- First time riders at higher risk (~1/3 of injuries associated with first trip)
- Time of crash (39% of injuries and 28% of trips were between 6pm and 6am)
- Vehicle Involvement (10% to 12.5%)
- Injured Body Regions (ED data: head, UX, LX most prevalent)
Some Unanswered Questions

- Location (spatial factors, type)
- Behavioral factors influencing injurious events (helmet use, riding behavior as f(environment)…)
- Interventions (will more bike lanes help? Use of parking areas, how to address impairment, discounted rates for safe behaviors…)
- Device characteristics that influence safety
- Effective policy (e.g., ATL nighttime ban, how to incentivize operators, speed limits…)
- Equity issues (can e-scooters expand mobility options for underserved communities)
Objectives

• Describe how hospitals currently identify and record mechanisms of injuries
• Describe the challenges specific to identifying electric scooter injuries
• Share Grady’s initial e-micromobility (scooter) injury data
• Next steps
Hospital Injury Data - How could we identify e-scooter injuries?

- ICD 10 codes
 - Numerous non-specific codes for scooters
 - Most commonly V-codes (mechanism), often unbillable
- Trauma registry data
 - Skewed towards seriously injured cases (admissions)
- Chart reviews
 - The term “Scooter” is not defined or used consistently
Challenges - What are we looking for?

“Motorized” Scooter

“Mobility” Scooter

“Non powered” Scooter

“Segway” Scooter
Challenges - What's in a Name?

- Scooter
- Electric Scooter
- Standing Scooter
- Dockless Scooter
- Motorized Scooter
- Micro-Mobility Scooter
- Brand name
 (Bird/Lime/Lyft/Jump/Bolt/Boaz/Wheels/Spin/Gotcha)
Our Approach

• Created **SCRATCH** injury registry (**Scooter CRash And Trauma CoHort**)

• Searched all ED notes from June 2018 – Sept 2019 for key words (i.e. – scooter, eScooter, company name, etc.)

• Manual chart review to confirm case involved a standup electric scooter
 - Classified Not e-scooter/Certain/Possible
 - Coded helmet use
 - Coded mechanism (MVC, fall on roadway, fall of roadway, fall unknown location, struck by, struck against, other, unk.)

• Extracted demographics, labs, notes, diagnoses (ED/hospital), charges, LOS…
Age Distribution by Sex

Age Distribution, Confirmed e-Scooters

- Female (n=121)
- Male (n=220)

65% male
ED Disposition

Patient Disposition

- Admitted (n=64, 19%)
- Died (n=1, 0%)
- Discharged Home (n=273, 81%)
Additional Findings

- Built environment commonly noted (~18%)
- Mechanical issues (~5%)
- 16% Motor Vehicle Collision
- Helmets rarely used
- ETOH common (27% of 158 pts tested had EtOH≥0.08 g/dL)
Additional Findings, continued

• Most common chief complaints (58 total over 337 patients):
 o Fall (32%),
 o Motorcycle crash (14%),
 o Trauma (10%),
 o Motor-vehicle crash (4%)
Financial Distribution

DISTRIBUTION OF CHARGES BY PAYER TYPE, CONFMIRMED E-SCOOTERS (N=341)

- **Self-Pay**: 37%
- **Commercial**: 42%
- **Medicare**: 7%
- **Medicaid (All)**: 14%

Median Charge for all possible and certain cases: $9,584
Injury Patterns (Subset Analysis from GMH NEISS)

- 44% of patients had head injuries (included face)
- 37% had lower extremity injuries
- Severe ankle injuries most common (10/12)
- Of UE injuries, distal are more common than proximal
Operator Reported vs. GMH Data

Operator vs. GMH Data, 2019

- N Injuries Reported by Companies
- GMH Certain e-Scooter
- GMH total
How to complete the injury picture

- Hospital data will identify the most severe injuries
- Urgent Care Centers
- Student Health Centers at local Universities
- Robust rider feedback
Next Steps

• In-Depth analysis of SCRATCH data

• Engage patients prospectively for better data collection (obtain accident related factors like helmet use, EtOH, travel behavior, role of built environment)

• Urgent care data

• Identify and implement injury prevention interventions

• Long-term site based observational study